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Abstract

In this paper, the behavior of four parallel symmetric cracks in a piezoelectric material under anti-plane shear
loading is studied by the Schmidt method for the permeable crack surface boundary conditions. By use of the Fourier
transform, the problem can be solved with the help of two pairs of triple integral equations that the unknown variables
are the jumps of the displacement across the crack surfaces. These equations are solved by means of the Schmidt
method. The results show that the stress and the electric displacement intensity factors of cracks depend on the ge-
ometry of the crack. Contrary to the impermeable crack surface condition solution, it is found that the electric dis-
placement intensity factors for the permeable crack surface conditions are much smaller than the results for the
impermeable crack surface conditions.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectric materials; Schmidt method; The triple integral equations; Parallel cracks

1. Introduction

It is well known that piezoelectric materials produce an electric field when deformed and undergo de-
formation when subjected to an electric field. The coupling nature of piezoelectric materials has attracted
wide applications in electric-mechanical and electric devices, such as electric-mechanical actuators, sensors
and structures. When subjected to mechanical and electrical loads in service, these piezoelectric materials
can fail prematurely due to defects, e.g., cracks, holes, etc. arising during their manufacture process.
Therefore, it is of great importance to study the electro-elastic interaction and fracture behavior of pi-
ezoelectric materials, especially when multiple cracks are involved. In the past several years, theoretical
studies of fracture in piezoelectric materials were carried out by many researchers (Deeg, 1980; Sosa and
Pak, 1990; Suo et al., 1992; McMeeking, 1989; Zhang and Tong, 1996; Soh et al., 2000). It is interesting to
note that very different results were obtained by changing the boundary conditions. To our knowledge, the

* Corresponding author. Tel.: +86-451-641-4145; fax: +86-451-623-8476.
E-mail address: zhouzhg@hope.hit.edu.cn (Z.-G. Zhou).

0093-6413/03/$ - see front matter © 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0093-6413(03)00026-0


mail to: zhouzhg@hope.hit.edu.cn

396 Z.-G. Zhou et al. | Mechanics Research Communications 30 (2003) 395-402

electro-elastic behavior of four parallel symmetric permeable cracks under anti-plane shear loading in a
piezoelectric material has not been studied.

In the present paper, the interaction between four parallel symmetrical cracks subjected to anti-plane
shear loading in piezoelectric materials is investigated by use of the Schmidt method (Morse and Feshbach,
1958). It is a simple and convenient method for solving this problem. The Fourier transform technology is
applied and a mixed boundary-value problem is reduced to two pairs of triple integral equations. In solving
the triple integral equations, the jumps of the displacement across the crack surfaces are expanded in a
series of Jacobi polynomials. This process is quite different from that adopted in previous works (Deeg,
1980; Sosa and Pak, 1990; Suo et al., 1992; McMeeking, 1989; Zhang and Tong, 1996; Soh et al., 2000). The
form of solution is easy to understand. Numerical examples are provided to show the effect of the geometry
of the cracks upon the stress intensity factor of the cracks.

2. Formulation of the problem

It is assumed that there are four parallel symmetric cracks of length (1 — b) in a piezoelectric material as
shown in Fig. 1. % is the distance between cracks (The solution of four parallel symmetric cracks of length
a — b in the piezoelectric materials can easily be obtained by a simple change in the numerical values of the
present paper, a > b > 0.). The piezoelectric boundary-value problem for anti-plane shear is simplified
considerably if we consider only the out-of-plane displacement and the in-plane electric fields. As discussed
in Soh et al. (2000) work, since no opening displacement exists for the present anti-plane problem, the crack
surfaces can be assumed to be in perfect contact. Accordingly, the permeable condition will be enforced in
the present study, i.e., both the electric potential and the normal electric displacement are assumed to be
continuous across the crack surfaces. So the boundary conditions of the present problem are:

wil) =@, r)(;) = ‘L')(?, PV = ¢, Dﬁ,” = Df), y=h, b>x|=0, |x|>1 (1)
WO =Wl @ =@ g2 =g DO =D y=0, b> >0, > 1 2)
=1 =1, ¢V =92 DY=DD y=h b<<I (3)
@ = =g, ¢P =9, DI =DP, y=0, b<k|<I (@)
wl =w® =w® =0 for (> +11)"* - 0 (5)

where 1, D, (k = x, y) are the anti-plane shear stress and in-plane electric displacement, respectively. w and
¢ are the mechanical displacement and the electric potential. Note that all quantities with superscript k&

Fig. 1. Four parallel symmetric cracks in a piezoelectric material.
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(k= 1,2, 3) refer to the upper half plane 1, the layer 2 and the lower half plane 3 as shown in Fig. 1. In this
paper, we only consider that 7, is positive.
The constitutive equations can be written as

Th = CauWyi +eisdy, Dip=eiswip —end, (6)

c4s, €15 and g are the shear modulus, piezoelectric coefficient and dielectric parameter. The anti-plane
governing equations are

C44VZW + €15V2¢) = O, 615V2W - Sllvzd) =0 (7)

where V? = 87 /dx? + 0?/0)? is the two-dimensional Laplace operator. Because of the assumed symmetry in
geometry and loading, it is sufficient to consider the problem for 0 <x < oo, 0 <y < oo only. A Fourier
transform is applied to Egs. (6) and (7). Assume that the solution is
2 o0
wl(x,y) == / Ay (s)e™ cos(sx) ds
T Jo

2 o]
W (x,y) = ?W(l)(x,y) +- / B (s)e ™ cos(sx)ds
11 T Jo

(v =h) (®)

w? (x,y) = % /OOO[AZ(S) e + By(s)e”] cos(sx)ds

. (h=y=>=0) (9)
¢ (x,y) = &5.,0) (x,y) + 2 / [Cy(s)e™ + D, (s)e”] cos(sx) ds
én T Jo
2 [ee]
wd(x,y) == A;(s)e” cos(sx) ds
T /0 3 o (»<0) (10)

B;(s)e” cos(sx) ds

SRS

0

where = cys + (el5/e11), 4i(s), Bi(s), Aa(s), Ba(s), Ca(s), Da(s), 43(s) and Bs(s) are unknown functions.
The gap functions of the crack surface displacements and the electric potentials are defined as follows:

fix) =w @, i) = w7, fn(x) = ¢, ) — ¢ (x, ) (11)

S) =W (x,07) = (x,07), fiax) = P (x,07) — ¢ (x,07) (12)

Substituting Egs. (8)—(10) into Eqgs. (11) and (12), applying the Fourier transform and the boundary
conditions, it can be obtained

fi(s) = [Ai(s) — Ax(s)]e™™" — By(s)e” (13)
fo(s) = i—llffl (s) + [Bi(s) — Ca(s)]e™ — Dy(s)e” = 0 (14)
fo(s) = A2(s) + Ba(s) — As(s),  fyals) = %ffz(s) + Ca(s) + Dafs) — Bs(s) =0 (15)

Here, a superposed bar indicates the Fourier transform throughout the paper.
Substituting Egs. (8)—(10) into Egs. (6), applying the Fourier transform and the boundary conditions, it
can be obtained

,LtAl (S) CiSh + @15B| (S) e"‘h = ,LL[Az(S) e"vh — Bz (S) e‘vh] + 615[C2 (S) e"vh — Dz (S) CSh] (16)
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[Bi(s) — Cy(s)]e *" 4+ Dy(s) = 0 (17)

1lAa(s) — Ba(s)] + e15[Ca(s) — Da(s)] = —pds(s) — eisBs(s), Ca(s) — Da(s) + Bs(s) =0 (18)

By solving eight Egs. (13)—(18) with eight unknown functions 4, (s), Bi(s), 42(s), Ba(s), Ca(s), Da(s), A3(s),
B;(s) and applying the boundary conditions (3) and (4), it can be obtained:

/OC scalfi(s) +e " fy(s)] cos(sx)ds = nry, b<x<1 (19)
0
/xs044[f2( )+ e " fi(s)] cos(sx)ds = nry, b<x<1 (20)
/ fi(s) cos(sx) / f2(s) cos(sx)ds = 0 b>x=20, x>1 (21)
From Egs. (19)—(21), it can be obtained
fils) = fols) = Ai(x) = /(x), P (xh) =2 (x,h) = 12 (x,0) = 7} (x,0) (22)
Df,')(x,h) = Dﬁz) (x,h) = D @ (x,0) = (x 0) (23)

To determine the unknown functions f;(s) and f3(s), the triple integral equations (19)~(21) must be solved.

3. Solution of the triple integral equation

The Schmidt method (Morse and Feshbach, 1958) is used to solve the triple integral equations (19)—(21).
The gap functions of the crack surface displacement are represented by the following series:

1/2,1/2) _ib (x_l%h)z v
ZCZP _b I—W s fornggl, y:() (24)
2 2

where a, are unknown coefficients to be determined and P{//>!/?)(x) are Jacobi polynomials (Gradshteyn
and Ryzhik, 1980). The Fourier transformation of Eq. (24) is (Erdelyi, 1954)

- > 006,64 (57 ) 23)

(—=1)"*cos (sl b
(=)™ 5in (sl ;b), n=1,3,517,...

where I'(x) and J,(x) are the Gamma and Bessel functions, respectively.
Substituting Eq. (25) into Egs. (19)-(21), Eq. (21) have been automatically satisfied. Then Eqgs. (19) and
(20) reduce to the form after integration with respect to x for b <x <1,

), n=0,2,46,...

Caa Z a,0, / 14+ e MG, (s)us1 <s1;b> [sin(sx) — sin(sh)]ds = nto(x — b) (26)



Z.-G. Zhou et al. | Mechanics Research Communications 30 (2003) 395-402 399

As discussed in Itou (1978) and Zhou and Shen (1999), Eq. (26) can now be solved for the coefficients a, by
the Schmidt’s method (Morse and Feshbach, 1958).

4. Intensity factors
The entire stress field and the electric displacement can be obtained as the coefficients a, are known.
However, in fracture mechanics, it is of importance to determine the stress 7,. and the electric displacement

D, in the vicinity of the crack tips. =l), <2/, <3, D{V), D) and D[’ along the crack line can be expressed
respectively as

r)(;)(x,h) 7 (x h) = 7:(2 (x,0) = ‘L' I(x,0) = 1,0

Ccu Za,,Q,,/ (1 + e "G, (s)J,.1(s]) cos(xs) ds (27)

DV (x, k) = DY) (x,h) = DY (x,0) = DY (x,0) = D
e Za,,Qn/ [1+ e G,(s)J,11(s) cos(xs) ds (28)

An examination of Egs. (27) and (28), the singular portions of the stress field and the electric displacement
can be expressed respectively as following

044 ZanQ,, L(b,x), D=

Q

1 ianQn (b,x) (29)

n n=0

l\)

where

H,(b,x) = (-)"""F(b,x,n), n=0,1,2,3,4,5,... (for0<x<b)

H,(b,x) = —F(b,x,n), n=0,1,2,345... (for I <x)

2(1 _b)n+l
F(b,x,n) =
VU4 b =207 — (1= BP[1 45— 2r /(1 46— 2 — (1 - b))
B(b,x,n) = a0~ b)”“

V@ =1 =B — (1= 0P [2x— 1= bt/ (2x— 1 =B — (1 b))

At the left tip of the right crack, we obtain the stress intensity factor Ky as

L = lim \/ - x *T = C44 Z anQn (30)

=
A n=0

At the right tip of the right crack, we obtain the stress intensity factor Ky as

. 1 N
KRZXIER 2n(x—1)-1=cu m;anQn (31)
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At the left tip of the right crack, we obtain the electric displacement intensity factor KD as

b 1 = e
. _ n R
K= = Xllrhq 2n(b—x)-D =eys (1 —b) (1—b) ,?:o (—-1)'a,0, = cn Ky (32)

At the right tip of the right crack, we obtain the electric displacement intensity factor KE as
. 1 > €1s
KP =1 2n(x—1)-D = —_— .0, = —K, 33
R = lim v/2n(x—1) 5\ 2n(1 = b) Zn:() @l = Kr (33)

5. Numerical calculations and discussion

From the works Itou (1978) and Zhou and Shen (1999), it can be seen that the Schmidt method is
performed satisfactorily if the first ten terms of the infinite series (26) are obtained. So the stress intensity
factor K and the electric displacement intensity factor D; can be calculated numerically. In the compu-
tations, the piezoelectric material is assumed to be the commercially available piezoelectric PZT-4. The
material constants of PZT-4 are ¢y = 2.56 (x10'° N/m?), ;5 = 12.7 (¢/m?) and &;; = 64.6 (x10710 ¢/Vm?).
The results of the present paper are shown in Figs. 2-7. From the results, the following observations are
very significant:

(1) The stress and the electric displacement intensity factors depend on the crack length and the distance
between four parallel cracks. (ii) The stress and the electric displacement intensity factors of the four
parallel cracks decrease as the distance between the parallel cracks decreases. The stress intensity factors
and the electric displacement intensity factors of the four parallel cracks increase when the length of cracks
increases. This phenomenon is called crack shielding effect as discussed in Ratwani’s paper (Ratwani and
Gupta, 1974). (iii) The electric displacement intensity factors for the permeable crack surface conditions are
much smaller than the results for the impermeable crack surface conditions as shown in Zhou’s paper
(Zhou and Shen, 1999). (iv) The stress intensity factor does not depend on the material constants. However,
the electric displacement intensity factor depends on the shear modulus and the dielectric parameter as
shown in Egs. (32) and (33). (v) The stress and the electric displacement intensity factors at the inner crack
tips are larger than ones at the outer crack tips.
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Fig. 2. The stress intensity factor versus b for 7 = 0.5 (PZT-4).
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Fig. 3. The electric displacement intensity factor versus b for 4 = 0.5 (PZT-4).
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Fig. 4. The stress intensity factor versus b for 7 = 4.0 (PZT-4).
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Fig. 5. The electric displacement intensity factor versus b for 4 = 4.0 (PZT-4).
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Fig. 6. The stress intensity factor versus 4 for b = 0.1 (PZT-4).
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Fig. 7. The electric displacement intensity factor versus 4 for b = 0.1 (PZT-4).
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